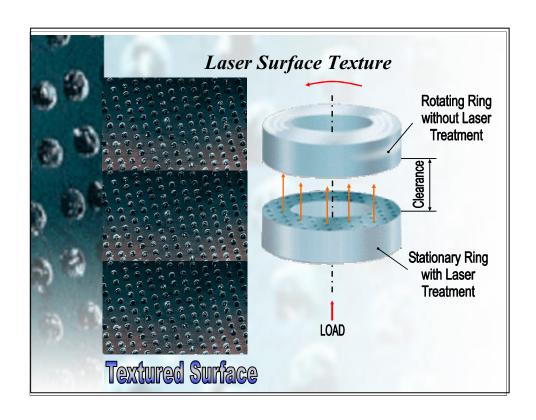
IMPROVED MAIN SHAFT SEAL LIFE IN GAS TURBINES USING LASER SURFACE TEXTURING

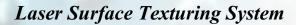
Alan D. McNickle Stein Seal Company Kulpsville, Pennsylvania

Izhak Etsion Surface Technologies, Ltd. Nesher, Israel

Overview

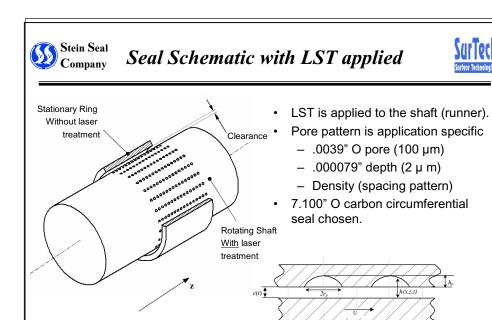
GOALS:


- Develop computer code for hydrodynamic force evaluation
- Develop Laser Surface Texturing (LST) for mechanical seals
- Increase Seal Life & Performance


APPLICATIONS:

- Gas Turbines (aviation & land based)
- Turbomachinery
- Automotive Engine Components
- · Mechanical Seals

FUNDING (PARTIAL):


- Bi-national Industrial Research & Development Fund (BIRD)
 - » Sponsored by the Israeli government
 - » With participation of foreign company (Stein Seal Co.)

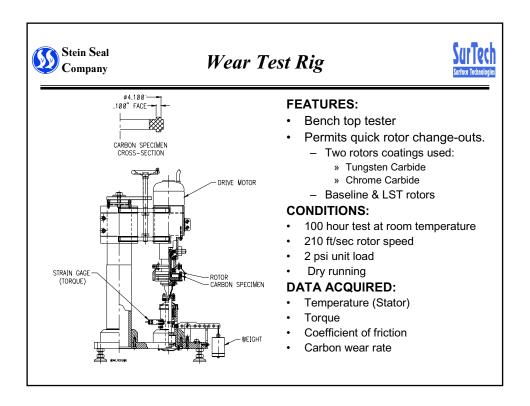
- Reliable, non contact method for surface treatment
- Treatment of all types of materials, including metal, graphite, ceramics, composites, etc.
- Environmentally friendly.
- Computerized control of pore parameters allowing optimal shaping of various areas.
- Fast coverage of large areas.

Dynamic Rig Tests

TWO TEST RIGS UTILIZED

- 1. Wear Test Machine
 - · Carbon disc on rotor
 - 100 hour dry running test (room temp.)
 - Evaluates torque, disc temperature, & wear

2. Dynamic Test Rig


- Simulates generic gas turbine "Take-Off" condition.
- Utilizes aviation carbon circumferential seal
- Baseline & LST Runners

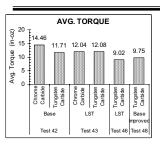
Surface Finish Definitions

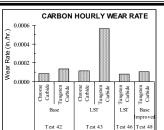
- Baseline
 - Uses typical runner with "off-the-shelf" surface finish
 » 8 RMS finish, runout .001"
- LST
 - Same as Baseline
 - Plus LST process
- · LST with improved surface finish
 - Improves the "off-the-shelf" finish
 - » 4 RMS finish, circularity .0005", runout .001"
 - » Included post LST process

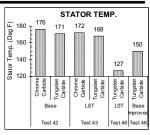
Stepped face seal gas bearing static test rig. The seal hardware is a sub-scale version of the actual development seal.

The rig is used to collect information such as:

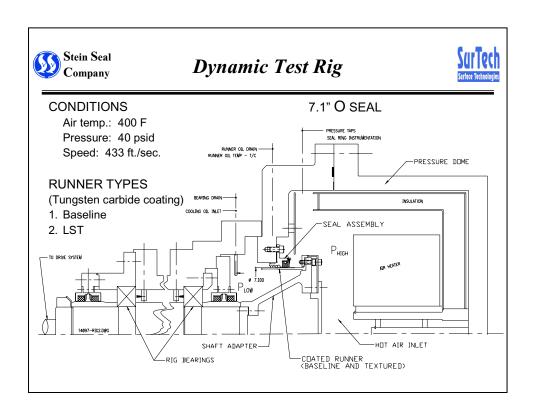
leakage vs. pressure


clearance vs. pressure

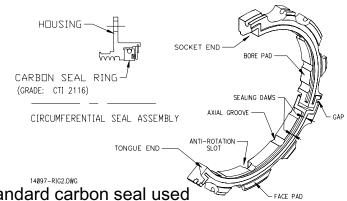

Proximity probes measure the gas film clearance. Effects of taper across the seal and/or rotor can also be tested.



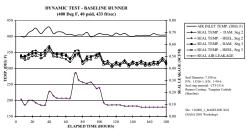
Wear Test Results (100 hour test)

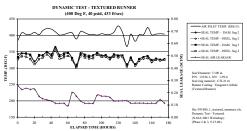


SUMMARY RESULTS

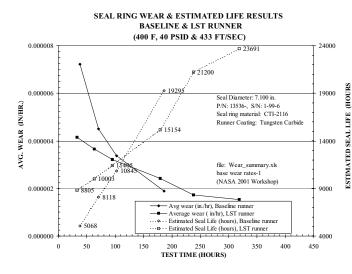

- Rotors: Baseline, LST, LST with improved finish, and Baseline with improved finish.
- High wear resulted during one test (Test #43, tungsten carbide)
 - Temperature and torque values comparable to other tests.
 - Cause for high wear: Rotor surface roughness exceeded micro-pore's depth
- Test #46 utilized LST rotor with "improved surface finish".
- Test # 48 utilized Baseline rotor with "improved surface finish" (data after 16 hours)
- Conclusion: Performance is enhanced with "improved surface finishes"

Seal Cross Section - Rig Test




- · Standard carbon seal used
 - Carbon graphite grade: USG-2116
- T/C's installed in two segments

Typical Test Results Baseline vs. LST Runner

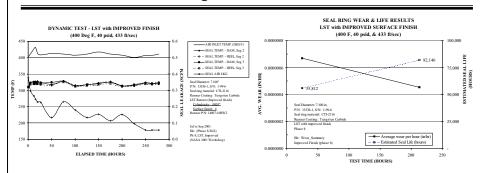


- Typical performance graph for rig tests
 - Elapsed time vs.:
 - » Seal Ring Temp. &
 - » Seal Leakage
 - Inlet air temp: 400 F
- Seal leakage tends to reduce with time as seal wear occurs.
 - Seal ring wears to the distorted runner shape due to thermally and centrifugal effects.

Dynamic Test Results Seal Wear & Estimated Life

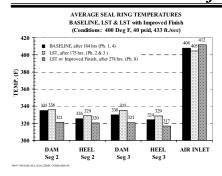
- Compares LST & Baseline runners.
- Seal wear measured at time intervals shown with graph symbol.
- Seal life based on seal ring worn to non-usable condition.
- Baseline runner yielded longer seal life.

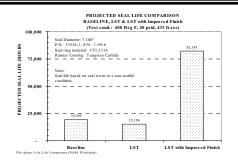
Runner Improvement Implemented



- Runner surface finish improved
 - Cylindricity
 - Surface Finish
 - Roundness
- LST re-applied with post process operations
 - Smooth "bulges" at pore periphery
 - Lap runner OD

Dynamic Test Results Company LST with Improved Runner Finish




- Seal ring temperature is approx. 18 °F cooler with LST & improved finish
- Seal life measured at two time intervals
 - -(25 hr & 278 hr)
- Seal life increased significantly (4.3:1) with LST & improved finish
 - Compared to Baseline Runner.

Seal Ring Temperature & Wear Life Comparison

- Seal ring temps. were generally cooler (~ 18 F) with LST and the improved surface finish.``
- Seal life increased 4.3:1 with LST & Improved Surface Finish